
 

 

2011 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY 
SYMPOSIUM 

MODELING & SIMULATION, TESTING AND VALIDATION (MSTV) MINI-SYMPOSIUM 
AUGUST 9-11 DEARBORN, MICHIGAN 

 
LEVERAGING BRAIN COMPUTER INTERACTION TECHNOLOGIES 

FOR MILITARY APPLICATIONS 
 

Anthony J. Ries & Brent Lance 
U.S. Army Research Laboratory 

Human Research and Engineering Directorate 
Aberdeen Proving Ground, MD 

 
Paul Sajda 

Department of Biomedical Engineering 
Columbia University 

New York, NY 
 
 

ABSTRACT 
Recent advances in neuroscience, signal processing, machine learning, and related technologies have made it 

possible to reliably detect brain signatures specific to visual target recognition in real time. Utilizing these 
technologies together has shown an increase in the speed and accuracy of visual target identification over 
traditional visual scanning techniques.  Images containing a target of interest elicit a unique neural signature in the 
brain (e.g. P300 event-related potential) when detected by the human observer. Computer vision exploits the P300-
based signal to identify specific features in the target image that are different from other non-target images. 
Coupling the brain and computer in this way along with using rapid serial visual presentation (RSVP) of the images 
enables large image datasets to be accurately interrogated in a short amount of time. Together this technology 
allows for potential military applications ranging from image triaging for the image analyst to target geo-tagging 
for ground troops. 

 
INTRODUCTION 

One area of research that may potentially lead to disruptive 
innovations is that of Brain-Computer Interaction 
Technologies (BCIT).  BCITs use non-invasively measured 
neural data, such as electroencephalography (EEG), in 
combination with other physiological and behavioral 
measures to enhance joint human-system performance for 
healthy individuals [1].  Recent advances in neuroscience, 
signal processing and machine learning have made it 
possible to exploit and integrate visual, motor, and cognitive 
processing of the brain with advanced computational 
algorithms of the computer [2].  There are many potential 
Army-relevant tasks that may benefit from these types of 
BCITs, including processing large quantities of image data. 

Advancements in sensor technology and digital storage 
continue to worsen the mismatch between our ability to 
collect and store data on the one hand and process and 
analyze it on the other. Large amounts of data present high 
computational demands on the limited processing capacities 
of both humans and computers, resulting in information 
overload and slow and often inaccurate performance.   As 
the quantity of information increases, so does the challenge 

of sifting through large amounts of data in order to quickly 
and accurately detect potential targets of interest. 

Throughput for image analysis is confined by processing 
limits of both the human brain and computer algorithms.  
Manually searching through large images or datasets is time 
consuming and impractical, especially when decisions about 
potential targets must be made quickly, whether searching 
for targets in satellite imagery or looking for enemy vehicles 
in video taken from an unmanned aerial vehicle (UAV). 
Given the critical nature of identifying targets in military 
operations, automated capabilities for processing image data 
are still limited.   

The human and computer each have their limitations in 
processing visual imagery; however, their strengths may be 
combined to overcome these shortcomings.  Humans are 
capable of rapidly making semantic distinctions based on 
visual input, while computers are capable of quickly 
searching large image databases.  In this paper we describe a 
method for developing mutual human-machine systems that 
utilize the capabilities of both the human and computer 
systems to improve capabilities for analyzing image data by 
using brain-based signals related to target recognition such 
as the P300 event-related potential (ERP) and techniques 
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such as displaying image data in rapid serial visual 
presentation. 

 
NEURAL SIGNATURES OF TARGET DETECTION 

A neural signal commonly used in EEG-based BCIT 
applications to identify when an observer detects a target of 
interest is the P300, or P3 event-related potential (ERP); e.g. 
[3-5]. An ERP reflects averaged EEG epochs time-locked to 
a specific stimulus and is used to improve the signal to noise 
ratio of the EEG signal [6]. The P3 is a large positive 
deflection in the ERP waveform occurring roughly 300ms 
after stimulus onset and is maximal over frontal/central and 
central/parietal electrodes.  

Typically both P3 amplitude and latency are measured, 
with amplitude assessed by comparing the pre-stimulus 
baseline amplitude to the largest positive peak of the ERP 
within a variable time window post-stimulus, and latency 
measured as the point of maximum positive peak amplitude 
within a time window beginning at the onset of stimulus 
presentation [7]. While the P3 can be clearly seen in an 
averaged ERP, it can also be measured in single trials, (as 
shown by Makeig et al. [8]; and for simultaneous EEG/fMRI 
by Goldman et al. [9]).   

The P3 has most commonly been evaluated using the 
‘oddball’ paradigm where an infrequent target stimulus is 
presented within a series of frequently occurring non-target 
distractor stimuli [10]. In a two-stimulus oddball paradigm 
an infrequent “oddball” target stimulus is presented with 
many frequent distractor stimuli where only the infrequent 
oddball stimulus requires a response. The time between 
stimulus presentation in a series ranges between 1-3 seconds 
and the probability of an oddball stimulus appearing is 
generally between 5-20%. The infrequent target evokes a P3 
component, specifically the P3b, which reflects the detection 
of a task-relevant stimulus [7], [11]. The P3 is also obtained 
when an observer views a highly familiar image or one that 
is currently held in memory [12], [13]. Overall, P3-related 
activity reflects neural process associated with attentional 
orienting toward a task-relevant stimulus in the sensory 
information stream.   
 
 
RAPID SERIAL VISUAL PRESENTATION (RSVP) 

 
Given the speed and precision of the human visual system 

to enable subtle semantic distinctions, and distinguish 
between relevant and non-relevant images, information 
throughput can be expanded by presenting stimuli at a much 
faster rate than is encountered in traditional self-paced 
searches. This is accomplished by using a rapid serial visual 
presentation (RSVP) paradigm in which a series of images 
are rapidly (e.g. 10Hz) and sequentially presented in the 
same spatial location to an observer who is searching for a 

predefined target image or class of images appearing in a 
stream of non-target distractor images (Figure 1). 
Essentially, an RSVP task containing one predefined target 
is a speeded version of the two-stimulus oddball task such 
that a predefined low probability target is presented among 
many high probability distractors in a rapid sequence.  

 

 
Figure 1: Example RSVP sequence. Sequence begins with a 
fixation screen followed by rapid (e.g. 100ms per image) and 
sequential image presentation. D = Distractor, T = Target. 
Photos courtesy of U.S. Army 

 
By using the RSVP paradigm in conjunction with the P3-

based ERP brain signal, it is possible for a human to quickly 
identify target stimuli, and for that identification to be 
detected by an external system (e.g., a BCIT).  

 
RSVP-BASED BCITs 

 
The human visual system can quickly categorize a 

predefined, semantically distinct target or class of targets 
from other non-target distractors in as little as 100ms [14]. 
This rapidity of image processing can be leveraged by using 
an RSVP or alternate image display paradigm. Detecting the 
resulting neural response induced by target detection makes 
it possible to develop BCIT systems for analyzing large 
quantities of image data.  Several systems have been 
developed based on this principle [15], [16].  

The system we will focus on in this paper is the Cortically-
Coupled Computer Vision system, or C3V system [17-19].  
The C3V system integrates the RSVP paradigm with P3 
ERP detection and a computer vision algorithm in three 
different methods.  The three methods are “computer first,” 
where the computer vision algorithm is used to triage images 
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in order to improve human performance at target detection, 
“human first,” where target detection data collected from a 
human performing the P3 RSVP task are used to improve 
the performance of the computer vision algorithm, and a 
“tightly-coupled” method, where the P3 RSVP task and the 
computer vision run in an iterative fashion to improve joint 
performance at target detection. 

An appealing feature of this approach is that the algorithms 
are trained as general interest or relevance detectors. There 
is evidence to suggest that even though an algorithm may be 
configured when an operator is searching for one class of 
targets, the same algorithm may be as efficient when 
searching for an entirely different class of targets [13].  This 
enables operators to process different classes of image data 
without having to retrain the C3V algorithms.   

 
C3V: Computer First Method 
 
One method for applying C3V technology uses computer 

vision followed by EEG and RSVP [18]. This occurs when 
the viewer has prior information about target features. The 
target features are then used to train a computer vision 
system as an image pre-processor.  The image pre-processor 
then is then used to extract likely target images from the 
overall data set, and places potential regions of interest 
(ROI) in the center of the image.  The images are then 
presented using RSVP while EEG is recorded. The EEG 
signals for each image are recorded and used to create an 
index of target relevance. A classifier is applied to 
discriminate between the target and distractor images, and 
those images that produce the highest target relevance score 
are placed at the front of an image triage for in-depth manual 
review.  

 
C3V: Human First Method 
 
The second method for applying C3 Vision is to first 

perform the RSVP task and use the resulting information to 
train the computer vision system [20]. One benefit of this 
method is that it does not require prior knowledge of specific 
target characteristics. To use this method, EEG signals are 
recorded during RSVP and images are ranked based on the 
viewer’s perceived target relevance as derived from the P3-
related neural activity. These image ranking metrics are then 
used to apply labels to the images.  The computer vision 
algorithms then use the image ranking metrics obtained 
during RSVP and EEG acquisition to identify other images 
in the database with similar low-level visual features and 
propagate the labels to those images.  

 
C3V: Tightly-Coupled Method 
 

The final method for applying this technology is the 
“tightly-coupled” method.  There are two potential 
implementations of this method, each with its own 
implications for interaction and application.  In the first 
implementation, RSVP is performed and EEG collected 
while computer vision simultaneously analyzes the same 
images, leading to a combined target relevance measure for 
each image. Because this implementation executes in near-
real time, it may be possible for it to run interactively, for 
example improving a Soldier’s Local Situational Awareness 
by processing recent image data of nearby areas.  

The tightly-coupled method can also be implemented as an 
iterative process, where the outputs from the RSVP and EEG 
analysis are used to provide training and labeling data to the 
computer vision system in order to improve its performance.  
Then, the computer vision system is used to triage the image 
database, providing more relevant images to the RSVP 
participant [19].  This iterative process, on the other hand, is 
more relevant for the offline improvement of target 
recognition algorithms such as image analysis for 
battlespace preparation before a mission.  Either way, by 
using these tightly-coupled methods, the joint target 
detection capability of the human-machine system can be 
improved. 
 
ARMY-RELEVANT APPLICATIONS OF RSVP-
BASED BCITS 

 
Searching Satellite Imagery Data for Intelligence 

Information 
 

 
Figure 2: A. Aerial image to be searched. B. Highlighted – 
“mowing the lawn” visual scan-path. C. Highlighted – image 
chips showing the highest probability of target presence 
based on C3 Vision. 

 
There are many potential Army-relevant applications of 

RSVP and EEG-based target detection systems such as the 
C3V system.  One area where these technologies have been 
successfully applied is in the domain of intelligence analysis 
for satellite imagery, where the goal is to find specific 
targets in large satellite images, as shown in Figure 2a [2], 
[18].   The current method for analyzing this image data is to 
use manual search patterns, such as the “mowing the lawn” 
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pattern seen in Figure 2b.  However, the computer-first C3V 
method has been successfully applied to this problem.  To do 
this, the large satellite image is first broken up into smaller 
image “chips,” which are processed by the C3V computer 
vision algorithm.  The goal of the computer vision is to 
locate potentially relevant chips, and change the focus of the 
chip so that potential ROI appear in the center of the image 
chip. 

The image chips are shown to an intelligence analyst using 
an RSVP paradigm.  The P3 signals extracted from the 
analyst’s EEG data then provide an index of target relevance 
for each chip.  Those image chips with high target relevance 
can then be highlighted in the original large image (See 
Figure 2c) for additional inspection. This process enables the 
entire large image to be interrogated quickly and accurately 
using foveal/parafoveal vision and few eye movements. The 
performance of the C3V system has been shown to enhance 
target detection performance. Parra and colleagues [2] 
compared the speed and accuracy over time of detecting 
helipads in large overhead imagery between baseline and C3 
Vision approaches using trained image analysts (IAs). 

 
Figure 3: Number of targets identified over time in the 
baseline search (blue line) and C3 vision based search (red 
line). Figure adapted from [2]. 

 
The IAs searched the imagery at full resolution in the 
baseline condition zooming in and out using a keyboard and 
marking each target helipad with a mouse click. In the C3V 
condition, IAs viewed image chips using RSVP and each 
chip was assigned a probability of target presence based on 
EEG metrics. Those images with the highest probabilities 
were moved to the front of an image triage for additional 
inspection. Figure 3 shows the results from six subjects 
searching two different satellite images, demonstrating that 
targets are identified more quickly using the EEG-based 

C3V-prioritized search when compared to baseline self-
paced search.   

 
Ground Vehicle Map Propagation 

 
Another potential translational application of C3 Vision 

technology to Army operations is to use its speed and 
adaptability to improve battlespace intelligence preparation 
by populating the common operating picture (COP) on a 
vehicle crewstation prior to a mission.  Video and image 
data obtained from forward scouts, satellites, or UAVs of the 
to-be-entered battle space could be processed using C3 
Vision virtually anywhere prior to mission execution. This 
would allow large areas of interest to be processed for 
potential targets at a rapid pace. The image data can be 
processed online in real-time or offline at a later point. 
Importantly those images that generate the highest target 
relevance score based on the C3 Vision metrics could be 
geo-tagged using latitude, longitude and elevation. 
 

 
Figure 4: A. Image data obtained using UAV. B. Images 
presented to analyst using RSVP to identify potential targets. 
C. Target locations propagated to vehicle crewstation maps.  

 
This information can then be propagated to distributed 

digital maps accessible through the crew station as potential 
‘hot spots’ (see Figure 4). Using C3V technology in this way 
would provide a means for ground troops to exploit recent 
image intelligence by providing potential locations of 
probable targets prior to entering the battlespace.   
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We are currently performing work to demonstrate further 
applicability of this technique through the development of 
mutually-derived human-machine situational awareness.  
This mutual situational awareness (MSA) will be based on 
large databases of images collected from the local 
battlespace through the use of UAVs, unmanned ground 
vehicles (UGV), unmanned ground sensors (UGS), and 360º 
local situational awareness (LSA) systems installed on 
manned ground vehicles.  The vision of mutually-derived 
situational awareness is that as P3 brain signals indicate that 
certain images are probable targets, simultaneous computer 
vision will search the databases of battlespace images and 
propagate labels to images with similar low-level visual 
features to the detected targets, and then further propagate 
those targets to distributed digital maps, showing potential 
targets similar to those identified by the human user.  The 
initial phases of this work have shown promising 
preliminary results in experiments performed in simulated 
environments, with the system correctly identifying a high 
percentage of the targets placed in the simulated 
environment based on the EEG data. 

 
Enhanced Aided Target Recognition (ATR) 
 
Battlespace intelligence can change rapidly, and it is 

important for the technology that Soldiers use to be able to 
quickly adapt to these changes. The fact that C3V system 
functions as a general interest or relevance detector makes it 
possible to use this technology to rapidly reconfigure aided 
target recognition algorithms.  For example, there are known 
examples of insurgents hiding improvised explosive devices 
(IED) in holes in the thick walls found in Iraq and 
Afghanistan, and covering the IEDs with posters [21].  Often 
the posters would be either pro-American or anti-American, 
leading Soldiers to approach the poster in order to read it or 
tear it down.   

Developing a computer vision algorithm that can perform 
the semantic identification of posters on the wall, much less 
pro-US or anti-US posters, is not a simple task.  However, 
the human brain is capable of making this semantic 
distinction quickly and accurately.  By using the iterative 
version of the tightly-coupled C3V method described above, 
it should be possible to develop training sets for rapidly 
training computer vision algorithms to identify images with 
low-level visual similarities to targets in the training set, 
which can then be used for ATR.  The success of this 
application will depend on the human ability to rapidly make 
the needed semantic distinction, the computer vision 
algorithm’s capability to obtain low-level visual features 
from the images, and the relationship between the high-level 
semantic distinction and the commonality of low-level visual 
features in target images that represent the semantic 
distinction.  While it is certain that this method will not 

generalize to every possible ATR scenario, it still provides 
promising capabilities to develop many useful systems. 

The current focus has been on BCITs using visual target 
recognition signals largely related to the P3; however, many 
other neural and behavioral measures can be used in BCIT 
applications, ranging from other ERP type signals such as 
the error-related negativity, (ERN) to powers and phases in 
oscillatory activity such as in the theta (4-8hz), alpha (8-
12Hz) and gamma (30-70Hz) bands.   In addition, behavioral 
measures such as eye-tracking or other information streams 
investigated via other sensory modalities, such as auditory 
and tactile, could also potentially benefit BCITs, with an 
ultimate goal being BCITs that optimize across the rich 
multisensory experiences which are ubiquitous in military 
operations.    

 
CONCLUSION 
 

In this paper, we have described a neural measure, the P3 
event-related potential, and a specific experimental 
paradigm, the rapid serial visual presentation paradigm and 
how they have been combined to develop a new type of 
brain-computer interaction technology, specifically the 
Cortically-Coupled Computer Vision system.  The C3V 
system has been successfully applied to one militarily-
relevant task, the intelligence analysis of satellite imagery 
data, and demonstrated improved performance over the 
current methodologies for performing this task.   Additional 
Army-relevant applications are discussed that use C3V-
based systems that should provide a means to further basic 
and translational research. 
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